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ABSTRACT

Community noise effects in general and noise annoyance in particular are mostly
studied by relating them to exposure through blind statistical analyses of large data-
sets. This paper reports on a specific part of a quite different approach. Using
mathematical simulation of basic perception and psychophysical mechanisms for a
large synthetic population, insight is sought into the mechanisms underlying the
emergence of noise effects. This is achieved by comparing — in a phenomenological
way — the statistics of the data gathered from the simulated synthetic population to
that of the real population. This paper focuses on modeling the role of attention. At-
tention could play a role in two distinct aspects of the process: firstly, attention can be
drawn away from other tasks by the environmental sound or tasks requiring sus-
tained attention can suppress the noticing of the environmental sound; secondly, at-
tention can jump between sounds in multisource sonic environments. In modeling this
dual role of attention, care must be taken to simplify existing knowledge on these as-
pects of perception in such a way that the model can be used to study long exposure
times and large populations. Such modeling may support the assessment of real life
situations where multiple environmental sounds interfere and cause noise annoy-
ance. Example simulations involving exposure to railway noise, road traffic noise,
natural sound and sound produced by the individual’s own activity show the influence
of attention on the model outcome.

INTRODUCTION

Noise plays an important role in the perception of the quality of the living environ-
ment, and there is a growing public concern about the disruptive effect of an adverse
living environment on health. Noise annoyance is commonly considered as the most
widespread effect of environmental noise, and community noise annoyance is found
to be a reasonable indicator to assess the impact of environmental noise pollution on
man. Community noise effects in general, and noise annoyance in particular, are
usually studied in relation to exposure through blind statistical analyses of large data-
sets.

In earlier work (De Muer et al. 2005; De Coensel & Botteldooren 2007, 2008; Bottel-
dooren & De Coensel 2008), the authors have followed a quite different approach.
The proposed methodology consists of simulating a large synthetic population of
modeled individuals, each with its own personal characteristics and within its own
context. The model for a single individual tries to achieve a balance between compu-
tational efficiency and psychoacoustic and psychological plausibility. Results are ana-
lyzed statistically on a population basis, exactly as one would analyze results of field
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studies with human participants. This paper reports on a specific process within the
model for a single individual: the role of attention.

Attention could play a dual role in the perception of environmental noise, and conse-
quently in the emergence of noise annoyance. Firstly, attention can be drawn away
from other tasks by the environmental sound, or tasks requiring sustained attention
can suppress the noticing of environmental sound. Secondly, attention can jump be-
tween sounds in multisource sonic environments. Knowledge on the neurological ba-
sis of auditory attention has recently expanded enormously (Fritz et al. 2007). This
evolution stimulated the development of very detailed computational models, such as
that of Wrigley & Brown (2004). However, they mainly focus on speech processing. In
modeling the dual role of attention in environmental noise perception, care must be
taken to simplify existing knowledge on auditory perception in such a way that the
model can be used to study long exposure times and large populations.

In the next section, the layout of such a model for a single individual is explained in
detail. Subsequently, results of simulations involving a large number of individuals
are given. The influence of attention on the model outcome is illustrated with simula-
tions in environments with road traffic noise, railway noise, natural sound and sound
produced by the individual’s own activity.

METHODOLOGY

The proposed framework for including attention mechanism in modeling perception of
and annoyance caused by environmental sound is shown in Figure 1. Simulated time
series of the sound levels caused by various environmental sound sources form the
input of the model. In a pre-attentive phase, salient parts of the sonic environment
are detected. Inspired by available neurobiological knowledge on attention (Fritz et
al. 2007; Knudsen 2007), the model implements a balance between top-down and
bottom-up focusing; similar mechanisms have been identified in visual attention fo-
cusing (Itti & Koch 2001; Shi & Yang 2007). In the following subsections, we will
briefly describe how each sub-mechanism is implemented in the model.

Simulating the sonic environment

Typical simulations consider the sound produced by vehicular traffic, railway traffic
and natural ambient sources (wind in trees, birds, etc.) in the vicinity of the modeled
individual. Vehicular and railway traffic is accounted for by simulating the emission of
each vehicle/train individually. However, the model treats natural ambient sounds
(including the sound produced by the modeled individual itself) as a whole, rather
than to consider the sounds produced by each bird, each tree, etc. separately. Natu-
ral ambient sound is assumed to fluctuate according to a 1/f characteristic, because
this characteristic was found in many recordings of environmental sounds (De
Coensel et al. 2003). Using a simple sound propagation model which considers only
attenuation caused by geometrical divergence, the time-varying sonic environment
(Laeq,1s time series for each source) at the location of the modeled individual is simu-
lated.

Pre-attentive processes: masking, stream regrouping and saliency detection

A sound presented at the ear will be observed only when it is not completely ener-
getically masked by other parts of the sonic environment. Therefore, the first step in
the processing of the environmental sound reaching the ear of the modeled individual

will account for masking. Temporal effects involved have time constants of a few
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100 ms at most. Therefore, within the scope of a long-term analysis and given the
time step of 1 s that was chosen, temporal effects of masking are safely ignored.
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Figure 1: Layout of the proposed model

In the proposed model, masking thresholds for each sound in the sonic environment
are based on the overall sound of all other sources. A comprehensive model for (par-
tial) masking should be based on the specific loudness of each sound. However, be-
cause the proposed model is aimed at simulating large populations of listeners for
long durations, the use of a detailed model such as that of Moore et al. (1997) is
computationally infeasible. Therefore, the total A-weighted sound level of all other
sounds is used as a proxy for the masking threshold. In other words, sounds (signals)
are not energetically masked by all other sound (noise) if their signal-to-noise ratio
(S/N) is positive.

The model could also allow for regrouping of auditory streams. When a listener is
exposed to an environment with multiple sound sources, the acoustic pattern at the
ear will consist of the sum of all concurrent sounds. Nevertheless, the human audi-
tory system is able to separate this mixture of sounds, and to form separate descrip-
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tions of each sound source. This mechanism is commonly referred to as auditory
scene analysis (ASA) (Bregman 1994). Stream separation is performed on the basis
of a variety of acoustic cues (bottom-up) and on the basis of acquired expectations
from prior experience or knowledge (Fritz et al. 2007). By simulating auditory streams
for each separate environmental sound source, the non-trivial problems of modeling
ASA and sound source identification are effectively by-passed. However, this ap-
proach imposes an a priori stream segregation, which may not coincide with actual
perception. Examples are the sound of a fountain making road traffic noise being
perceived as part of the fountain sound, whether individual cars are heard or the
sound of a street, whether individual bird songs are heard or the morning chorus of
birds etc. Therefore, at least conceptually, a stream regrouping process is allowed in
the model.

Saliency detection is probably the most important feature of the biological auditory
system. Novelty may trigger bottom-up attention, but this is not a necessary conse-
guence. Saliency may be detected based on various temporal and spectral cues. Sa-
liency detection is implemented in the model, for each auditory stream separately, by
comparing the S/N of the stream to a predicted value. For simplicity, a linear predictor
based on the exponential average of earlier S/N is used. A future improvement could
be to include a neural network, dynamically trained for optimal prediction, possibly
based on remembered sounds retrieved from memory. Because the peak detection is
implemented for each individual type of sound, deviant behavior on the frequency
axis, which is usually included in the calculation of a saliency map (Kayser et al.
2005), can be neglected in a first approximation.

Figure 2 shows two examples of calculated saliency. Close to the road where only
few vehicles an hour come by, saliency roughly follows the individual car passage
events. Since remembered sounds of car passages are not used in this first approxi-
mation and the time between passages is unpredictable, the prediction is poor and
saliency keeps popping up at each individual passage. Close to the road carrying
more traffic, the predictor gradually improves and saliency decreases.

Bottom-up attention mechanism

High levels of saliency attract attention (bottom-up). However, the perceptual system
does not stay focused on this salient feature continuously. The mechanism playing a
crucial role here is inhibition of return (IOR) (ltti & Koch 2001), which prohibits atten-
tion to come back to the same salient streams over and over again.

This mechanism is implemented in a simplified way as a competition between an ac-
tivator, AA, and inhibitor, Al. Activation is triggered by saliency. It has a very short
rise time 1a- and a somewhat longer decay time 7a4. Because the rise time probably is
shorter than the 1 s resolution of the simulation, AA jumps up almost instantaneously
in the model. Decay starts immediately after this jump. The strength of activation is
assumed to be a saturation process. If activation is higher than inhibition for a par-
ticular auditory stream, this stream spikes for attention. As soon as attention gets fo-
cused on the particular stream by the mechanism explained in the next section, inhi-
bition comes into play. It is modeled as a slow process with a short rise time 7, (>7ar)
and a very long decay time 14 (>7aq). Al continues increasing until eventually it ex-
ceeds AA at which time the stream stops spiking for attention. Attraction of bottom-up
attention is thus implemented as a spiking mechanism: the process will fire a couple
of times, until either saliency decreases or attention is obtained, at which time the
IOR mechanism will stop the spiking.
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In Figure 2 activation and inhibition levels are shown together with the spikes (green
line) resulting from it. For the low intensity traffic stream, (bottom-up) attention is
asked for at almost every car passage although occasionally a noise event is over-
looked. The higher traffic intensity situation shown in the lower graphs results in
slightly more attention requests, but after the initial adaptation period of a few hun-
dred seconds, a quite different regime sets in: the time since the last granted request
is as least as important as the instantaneous saliency.
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Figure 2: Road traffic noise level and background level in dBA together with intervals of attention for
road traffic noise (upper graphs); saliency, activation, inhibition and bottom-up attention triggers (lower
graphs): a) close to a road with few vehicles/h, b) close to a road with about 500 vehicles/h
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Top-down attention mechanism and attention switching

Top-down attention focusing is guided by higher cognitive processes. It results in a
change in sensitivity for a particular auditory stream, which implies that it has no ef-
fect as long as no stimulus is present. Top-down attention for environmental sounds
may depend on

¢ the task that the person is performing, which in turn is related to the current activ-
ity;

e emotional state such as anxiety, arousal etc.

e personal treats such as noise sensitivity etc.

¢ the information content of the stream to which attention is currently directed.

The bottom-up mechanism makes attention switch between auditory streams,
whereas the top-down mechanism tries to focus attention on a single stream. Spo-
radically attention stays caught by the bottom-up mechanism, resulting in remem-
bered noticing of the environmental sound. It could be assumed that limited availabil-
ity of resources mainly plays a role in sustained attention.

The attention switching mechanism can be seen as a gating mechanism that
switches off all but a couple of auditory streams at a single instance in time. The sen-
sitivity for non-attended sources is decreased. Parallel processing is changed to se-
rial processing: the individual listens to a single stream at a time.

The implementation of the top-down mechanism consists of an activity related part
DA., a personal related part DA, and a part related to the information content of the
attended sound DA,. The first two parts are independent from the sound. They could
be modeled using time-activity patterns of the studied population, but currently are
fixed for every modeled individual in the population. The last part could depend on
the meaning that people give to the sound, but currently is modeled solely on the ba-
sis of the overall saliency of the attended signal, which could be seen as a measure
of interesting variation in the sound. If this variation is lost, attention drops.

The attention switch that is mathematically implemented is a winner-take-all mecha-
nism. The selection is based on the sum of the overall DA and an activation of the
bottom-up attention. The activation of the bottom-up attention is an integrator that
receives an additional activation SUA every time the bottom-up mechanism described
in the previous section spikes for attention, and decays rather fast with a time con-
stant rya afterwards. The gate is opened for the winning stream, resulting in a pass-
ing of the auditory stream to the cognitive process of attaching meaning (currently
only the calculation of DA; based on saliency). This situation is kept until another
stream gets attention.

In order for this numerical model to work properly, non-auditory processes should be
allowed to draw attention away from the auditory streams. Indeed, particular tasks
could prevent noticing of sounds even though they do not involve listening at all. To
account for this, an additional non-auditory stream is added that periodically fires for
attention.

Figure 2 also shows the actual attention paid to the road traffic (red line in upper
curves). It can be seen that it responds roughly to the triggers received from the bot-
tom-up mechanism but not always since the modeled individual may be involved in
other activities requiring attention. The duration of actual attention is also longer than
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the duration of bottom-up attention request. This prolonged attention is in this simple
approximation fully determined by saliency, be it in an indirect and complex way.

SIMULATION RESULTS

The main purpose of the numerical simulation is to observe emergence of features
that have not been modeled explicitly and thus to relate them to underlying basic
mechanisms. For the example given in this paper, simulations are performed for a
simplified setting: people seeking recreation in mildly disturbed rural areas. The sonic
environment of this setting is modeled using the simplified layout of the environment
shown in Figure 3 and with parameters ranges defined in Table 1. In total 20,000
combinations of people and environment were simulated for a one hour visit and the
results for this synthetic population are analyses statistically in a manner very similar
to the usual analyses of survey data.

Table 1: Range of distances and traffic intensi-
ties used in the numerical experiment

Quantity  Average Minimum Maximum
dpw 3.9km 1 km 10 km
Npw 2000 cars/h 1500 cars/h 2500 cars/h
400 trucks/h 300 trucks/h - 500 trucks/h
. deg 185m Sm 1 km
'—; N,a 250 cars/h Scars/h 500 cars/h
E 10 trucks/h | truck/h 20 trucks/h
iy 1950 m 500 m Skm
N 1 train/h No trains 3 trains/h

Figure 3 (left): Simplified layout of the rural set-
ting

In Figure 4 we focus on the effect of activities of the modeled individual seeking rec-
reation. In the left column figures, the modeled individual is assumed to be focused
on activities not related to observing environmental sound such as conversation,
reading, active sporting, and thus not paying much (top down) attention to the sound.
In this case, the average modeled individual in the synthetic population observes
road traffic for some amount of time but hardly any other sources. The saturation with
increasing Laeq, road (Upper graphs) could be linked to the saliency detection gradually
decreasing, which could be called habituation or adaptation to the sonic environment.
Within the range of modeled railway Laeq, there is no effect of railway noise on the
time that road traffic sound is observed. With increasing level of natural sound, this
time drops down very strongly but interestingly enough, the time that natural sound is
observed hardly rises.

The picture changes when it is assumed that the modeled individual is actively listen-
ing to natural sounds, e.g. while watching birds (right column of graphs in Figure 4).
Due to the fact that relatively strong top down attention is used, the modeled individ-
ual succeeds in its goal and observes natural sounds most of the time, except when
the level of natural sounds drops very low. The interference with this listening task
caused by road traffic is observable but less than expected, even at road traffic noise
levels above 70 dBA. More detailed analyses showed that this is due to the fact that
a rural area is modeled and high levels of road traffic noise correspond to close roads
carrying moderate traffic intensity. Hence energetic masking happens only infre-
quently and the attention mechanism is still able to pick up on the natural sound.
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Figure 4: Time of observation of different types of sound as a function of equivalent noise levels: for
top down attention focussed on other activities in left column; dop down attention focussed on listening
to natural sounds

CONCLUSIONS

In this paper we discussed how attention mechanisms can be included in a numerical
model for individual observation of environmental sounds. Care is taken to keep
computational complexity of the proposed model limited in order to allow simulating
the effect on large synthetic population for considerable observation times. On the
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one hand saliency detection and bottom up attention triggering were modeled in de-
tail, on the other hand top down attention was included in a more general way.

Simulation of a synthetic population recreating in a mildly disturbed rural area allowed
investigating how such a model can generate emergent features for the population as
a whole. At least some of these results can be related in a qualitative way to earlier
field studies such as (De Coensel & Botteldooren 2006) where we noted that the
equivalent noise level of road traffic noise did not accurately predict the disturbance
of silence. This could be explained by the saturating time of observation of road traffic
sound with Laeq and the limited effect on the observation of natural sound (when fo-
cusing attention on it) with increasing Laeq. The better correlation with LA50 observed
in this field work could not be checked in the modeling at the time that this paper was
written.

This paper presents another step forward in an ongoing effort to model the effect of
environmental sound on everyday life numerically based on basic knowledge on hu-
man perception. An effort that aims at bridging the gap between environmental noise
specialists, medical researchers, and psychologists.
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